ÖzgecmiÅŸ
DoÄŸum : Konya-Akören 1944.
Lisans :1968 Ege Universitesi Matematik Bölümü.
Bilim Uzmanligi(MS) : 1971-1973 California Universitesi, Santa Barbara Kampusu, ABD.
Doktora(PhD) : 1974 Hacettepe Universitesi, Ankara.
Doçent : 1980 Hacettepe Universitesi, Ankara.
Profesör : 1988 Hacettepe Universitesi, Ankara.
Gorevlendirmelerim:
(1). 1978 de 6 ay, Ottawa Universitesi, Canada.
(2). 1989 da 15 gün Bar Ilan Universitesi, Israil.
(3). 1990 da 5 ay Glasgow Universitesi, Ingiltere.
(4). 1991 de 50 gun Glasgow Universitesi, Ingiltere.
(5). 1992 de 45 gun Glasgow Universitesi, Ingiltere.
Yayinlar : Prof. Dr. Abdullah Harmanci;
-
On the commutativity of some class of rings. J. Austral. Math. Soc. Ser. A 21 (1976), no. 3, 376-380.
-
Two elementary commutativity theorems for rings. Acta Math. Acad. Sci. Hungar. 29(1977), no. 1-2, 23-29.
-
On the strongly regular near-rings, Hacettepe Bull. of Sciences, 4(1975),118-122.
-
On the commutativity of Rings with Polynomial constrains, Hacettepe Bull. of Sciences, 5(1976),8-11.
-
Degismeli Cebire Giris (Ceviri : An Introduction to Commutative, Algebra, Atiyah-McDonald) Hacettepe Universitesi Yayini, 1980.
-
Cebir I, Hacettepe Universitesi Yayini,1987.
-
Cebir II, Hacettepe Universitesi Yayini, 1987.
-
On a class of Schur AW*-algebras. Acta Math. Hungar. 41(1983), no. 3-4, 279-281.
-
Matrix Baer *-Rings, Hacettepe Bull. of Sciences, 15, 61-67, 1986.
-
Some remarks on the commutativity of rings, Hacettepe Bull. of Sciences, 15(1986),69-75.
-
(A. Harmanci and P. F. Smith) Relative injectivity and module classes. Comm. Algebra 20 (1992), no. 9, 2471-2501.
-
( P. F. Smith and A. Harmanci) Finite direct sums of CS-modules. Houston J. Math. 19 (1993), no. 4, 523-532.
-
(Y. Tiras, A. Tercan and A. Harmanci) Prime modules. Honam Math. J. 18 (1996), no. 1, 5-15.
-
(With P. F. Smith, Y. Tiras and A. Tercan) CS-Moduller, TBAG-1200 Proje 1995.
-
(With P. F. Smith, Y. Tiras and A. Tercan) The Bass-Papp theorem and some related results. Vietnam J. Math. 25 (1997), no. 1,33-39.
-
16. (With P. F. Smith, Y. Tirai and A. Tercan) Direct sums of CS-modules. Houston J. Math. 22(1996), no. 1, 61-71.
-
(With P. F. Smith and C. Celik) A generalization of CS-modules. Comm. Algebra 23(1995), no. 14, 5445-5460.
-
(With Y. Tiras and A. Tercan) A study of prime submodules and the classification of prime submodules of an Artinian module.Far East J. Math. Sci. 2 (1994), no. 2, 191-199.
-
(With G. Gungoroglu) Coatomic modules over Dedekind domains. Hacet. Bull. Nat. Sci. Eng. Ser. B 28(1999), 25-29.
-
(With D. Keskin and P. F. Smith) On delta-Supplemented Modules, Acta Math. Hungar. 83 (1999), no. 1-2, 161-169.
-
(With A. C. Ozcan) A Characterization of some rings by functor Z*( ). Turkish J. Math. 21(1997), no. 3, 325-331.
-
(With Y. Tiras) On prime submodules and primary decomposition. Czechoslovak Math. J. 50(125) (2000), no. 1, 83-90.
-
(Y. Tiras, A. Harmanci and P. F. Smith) A characterization of prime submodules. J. Algebra 212 (1999), no. 2, 743-752.
-
24 (G. Gungoroglu and A. Harmanci) On some classes of modules. Czechoslovak Math. J. 50(125) (2000), no. 4, 839-846.
-
25 . (Y. Tiras, A. Harmanci, P. F. Smith) Some remarks on dense submodules of multiplication modules.
-
Comm. Algebra 28 (2000), no. 5, 2291-2296.
-
26 .(G. Gungoroglu - A. Harmanci) Soyut Cebir'e Giris Dersleri, Problemler ve Cozumleri, Kasim 1999.
-
(G. Gungoroglu - A. Harmanci) Lineer Cebir Dersleri, Problemler ve Cozumleri, Ocak 2000.
-
(Eroglu, Nuray; Tercan, Adnan; Harmanci, Abdullah) Modules for which every submodule has a unique d-closure. Hacet. Bull.
-
Nat. Sci. Eng. Ser. B 29 (2000), 23-29.
-
29. (N. Eroglu, A. Tercan and A. Harmanci) d-Normal Modules, Hacettepe Nat. and Science Bulletin, Series B, 29(2001), 23-29.
-
30. (A. C. Ozcan and A. Harmanci) The torsion theory generated by M-small modules. Algebra Colloq. 10 (2003), no. 1, 41-52.
-
31. (D. Keskin and A. Harmanci) A relative version of the lifting property of modules. Algebra Colloq. 11 (2004), no. 3, 361-370.
-
32. (M. Alkan and A. Harmanci) On summand sum and summand intersection property of modules. Turkish J. Math. 26 (2002), no.
-
2, 131-147.
-
33. (G. Gungoroglu and A. Harmanci) Copolyform Modules. Preprint.
-
34. (T. Kosan and A. Harmanci) Modules which are lifting relative to module classes. Kyungpook Math. J. 48 (2008), no. 1, 63-71.
-
35. (T. Kosan and A. Harmanci) Modules supplemented relative to a torsion theory. Turkish J. Math. 28 (2004), no. 2, 177-184.
-
36. (T. Kosan and A. Harmanci) Decompositions of modules supplemented relative to a torsion theory. Internat. J. Math. 16 (2005), no. 1, 43-52.
-
37. (T. Kosan and A. Harmanci) $\oplus$--supplemented modules relative to a torsion theory. New Zealand J. Math. 35 (2006), no.
-
1, 63-75.
-
38. (G. G ng roglu, T. Kosan and A. Harmanci) On some torsion classes in \Sigma[M], Far East J. Math. Sci. (FJMS) 13 (2004), no.
-
1, 39-53.
-
39. (T. Kosan and A. Harmanci) $\deta-$lifting and $\delta$-supplemented modules. Submitted to publication.
-
40. (T.Kosan and A.Harmanci), Generalizations of coatomic modules. Cent. Eur. J. Math. 3 (2005), no. 2, 273-281.
-
41.(T. Kosan, N. Agayev, A. Leghwel and A. Harmanci) Duo modules and duo rings. Far East J. Math. Sci. (FJMS) 20(2006), no. 3,
-
341-346.
-
42. (A. Leghwel and A. Harmanci) CSSES-Modules and CSSES Rings, Gazi Univ. Journal of Science, 18(3),2005, 381-391.
-
43. (Nazim Agayev, Abdurzak Leghwel and Abdullah Harmanci) On a generalization of injective modules with IN-conditions. Far
-
East J. Math. Sci. (FJMS) 16 (2005), no. 3, 395-408.
-
44. (A. Hamdouni, A. C. Ozcan and A. Harmanci) Characterization of modules and rings by the summand intersection property and the summand sum property. JP J. Algebra Number Theory Appl. 5 (2005), no. 3, 469-490.
-
45. (S. Dogruoz and A. Harmanci) \tau-Extending Modules Related to Extendings, Preprint.
-
46. (M. Baser and A. Harmanci) \alpha-Semicommutative Rings, Preprint.
-
47. (T. Kosan, M. Baser and A. Harmanci) Quasi-Armendariz Modules, Submitted for publication.
-
48. (T. Kosan and A. Harmanci) Pseudo-Frobenius Module and Rings, Submited for publication.
-
49. (M. Baser and A. Harmanci) Reduced and p.q.-Baer modules. Taiwanese J. Math. 11 (2007), no. 1, 267-275.
-
50. (A. Leghwel and A. Harmanci) A note on semiperfect CS-rings with essential socle, submitted for publication.
-
51 (T. Kosan and A. Harmanci) Fully Invariant Submodules And Projection Invariant Submodules, accepted to publish in International J. Math.
-
52. (M. Baser, A. Harmanci and T. K. Kwak) Generalized semicommutative rings and their extensions. Bull. Korean Math. Soc. 45,(2008), no. 2, 285-297.
-
53. (M. Baser and A. Harmanci) On quasi-Baer and p.q.-Baer modules. Kyungpook Math. J. 49 (2009), no. 2, 255-263.
-
54. (A. C. Ozcan, A. Harmanci and P. F. Smith) Duo modules. Glasg. Math. J. 48 (2006), no. 3, 533-545.
-
55. (S. Dogruoz, A. Harmanci and P. F. Smith) Modules with unique closure relative to a torsion theory. Canad. Math. Bull. 53,(2010), no. 2, 230-238.
-
56. (N. Agayev and A. Harmanci) On semicommutative modules and rings. Kyungpook Math. J. 47 (2007), no. 1, 21 30.
-
57. (S. Dogru z, A. Harmanci and P. F. Smith) Modules with unique closure relative to a torsion theory. II. Turkish J. Math. 33, (2009), no. 2, 111-116.
-
58. (H. K. Yoldas, S. Halicioglu and A. Harmanci) McCoy Modules, Submitted for publication.
-
59. (N. Agayev, S. Halicioglu and A. Harmanci) On reduced modules. Commun. Fac. Sci. Univ. Ank. S r. A1 Math. Stat. 58 (2009), no. 1, 9-16.
-
60. (S. Halicioglu, N. Agayev and A. Harmanci) On symmetric modules. Riv. Mat. Univ. Parma (8) 2 (2009), 91-99.
-
(N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu) Abelian modules. Acta Math. Univ. Comenian. (N.S.) 78 (2) (2009), 235-244.
-
(N. Agayev, A. Harmanci and S. Halicioglu) On abelian rings. Turkish J. Math. 34 (2010), no. 4, 465-474.
-
(N. Agayev, T. zen and A. Harmanci) On a class of semicommutative modules. Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 149-158.
-
(N. Agayev, T. Ozen and A. Harmanci) On a class of semicommutative rings. Kyungpook Math. J. 51 (2011), no. 3, 283-291.
-
(N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu) Central Armendariz rings. Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 137-145.
-
(N. Agayev, A. Harmanci and S. Halicioglu) Extended Armendariz rings. Algebras Groups Geom. 26 (2009), no. 4, 343-354.
-
(H. Inankil, A. Harmanci and S. Halicioglu) On a class of lifting modules. Vietnam J. Math. 38 (2010), no. 2, 189-201.
-
(U. Acar and A. Harmanci) Soft Ideals of Soft WS-Algebras, TWMS J. of Pure and Applied Math.,4(2)(2013) 426-436.
-
(Ungor, B., Halicioglu, S., Kamal M. A. and Harmanci, A.) Strongly Large Module Extensions, An.Stiint.Univ.Al.I.Cuza Iasi. Mat., (N.S.)59(2) (2013), 431-452.
-
(U. Acar and A. Harmanci) Principally supplemented modules. Albanian J. Math. 4 (2010), no. 3, 79 88.
-
(Buhphang, A.M., Halicioglu,S., Harmanci,A., Singh,K.H., Kose,H.Y. and Rege, M.B.) On Rigid Modules, East-West J.of Math.15(1)(2013), 71-85.
-
(N. Agayev, A. Harmanci and S. Halicioglu) On Rickart modules. Bull. Iranian Math. Soc. 38 (2012), no. 2, 433 445.
-
(S. Dogruoz, A. Harmanci and P. F. Smith) Modules with Unique Closure Relative to a Torsion Theory III, Ukranian Mathematical Journal, 66(2014),1028–1036.
-
(B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci) On principally quasi-Baer modules. Albanian J. Math. 5 (2011), no. 3, 165173.
-
(H. Inankil, S. Halicioglu and A. Harmanci) A generalization of supplemented modules. Algebra Discrete Math. 11 (2011), no. 1, 59-74.
-
(H. Kose, B. Ungor, S. Halicioglu and A. Harmanci) A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci. 38(1), (2014), 43-48.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) On Generalized Principally Quasi-Baer Modules, Bol. Mat. 20(1), (2013), 51-62.
-
(U. Acar and A. Harmanci) Principally H-Supplemented Modules, Submitted for publication.
-
(G. Kafkas, B. Ungor, S. Halicioglu and A. Harmanci) Generalized symmetric rings. Algebra Discrete Math. 12 (2011), no. 2, 7284.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) Dual pi-Rickart modules. Rev. Colombiana Mat. 46 (2012), no. 2, 167-183.
-
(U. Acar and A. Harmanci) On A Class of H-Supplemented Modules, Accepted for publication in Algebras, Groups and Geometries.
-
(B. Ungor, G. Kafkas, S. Halicioglu and A. Harmanci) Some properties of Rickart modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 61(2012), no. 2, 1-8.
-
(Agayev,N., Ungor B., Halicioglu,S. and Harmanci, A.) Modules which are reduced over their endomorphism rings, Thai Journal of Mathematics,13(1)(2015), 177-188.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) Symmetric Modules over their endomorphism rings, Algebra Discrete Math. 19(2)(2015), 283-294..
-
(B. Ungor, S. Halicioglu and A. Harmanci) Extensions of Baer and Principally Projective Modules, Gazi Univ.J.Sci.,25(4)(2012) 863-867.
-
(B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci) Endo-principally projective modules. Novi Sad J. Math. 43 (2013), no. 1, 41 49.
-
(Ungor, B., Halicioglu, S., Kose, H. and Harmanci, A.) Rings in which every nilpotent element is central, Algebras,Groups and Geometries, 30(1)(2013), 1-18.
-
(Ungor,Burcu; Halicioglu,Sait; Harmanci,Abdullah) A Generalization of Rickart modules, Bull.Belgium Math.Soc.Simon Stevin, 21(2)(2014),303-318.
-
(B. Ungor, Halicioglu,Sait, A. Harmanci) On a class of $\delta$-supplemented modules, Bull. Malays.Sci.Soc., Bull. Malays. Math. Sci. Soc. (2)37(3)(2014), 703-717.
-
(B. Ungor; S. Halicioglu; A. Harmanci) Generalized Rigid Rings, Submitted for publication.
-
(H. Chen, A. Harmanci and A. Ozcan) Strongly $J$-Clean Rings, Ring Theory and Its App., Edited by: D. V. Huynh, S. K. Jain, S. R. Lopez-Permouth,S. T. Rizvi and C. S. Roman, March 2014.
-
(B. Ungor, S. Halicioglu and A. Harmanci) Rickart Modules Relative Goldie Torsion Theory, submitted for publication.
-
(H. Chen, A. Harmanci and A. Ozcan) Strongly J-clean rings with involutions, Ring theory and its applications, 33–44, Contemp. Math., 609, 2014.
-
(H. Chen, O. Gurgun, S. Halicioglu and A.Harmanci) Rings in which nilpotents belong to Jacobson Radical, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si Mat. (N.S.) Tomul LXII, 2016, f. 2, vol. 2.
-
(B. Ungor, S. Halicioglu and A. Harmanci) On a class of $\oplus$-supplemented modules, Ring Theory and Its App.Edited by: D. V. Huynh, S. K. Jain, S. R. Lopez-Permouth,S. Tariq Rizvi and Cosmin. and S. Roman, March 2014.
-
(H. Chen, A. Harmanci and A. C. Ozcan) Strongly *-Clean Properties and Rings of Functions, submitted for publication.
-
(B. Ungor, O. Gurgun, S. Halicioglu and A. Harmanci) Feckly Reduced Rings, Hacet. J. Math. Stat. 44(2)(2015), 375-384.
-
(A. Harmanci, S. R. Lopez-Permouth and B. Ungor) On the pure-injectivity profile of a ring, Comm. Algebra 43(11)(2015), 49845002.
-
(Gurgun,O., Halicioglu,S. and Harmanci, A.) Quasipolar Subrings of 3x3 Matrix Rings, Analele.St.Univ.Ovidius Constanta,21(3) (2013),133-146.
-
(O. Gurgun, S. Halicioglu and A.Harmanci) Quasipolarity of Generalized Matrix Rings, :https://www.researchgate.net/publication/258817348.
-
(Halicioglu Sait, Gurgun Orhan and Harmanci Abdullah) On Nil-quasipolar Rings, Boletín de la Sociedad Matemática Mexicana · April 2014 DOI: 10.1007/s40590-014-0005-y.
-
(B. Ungor, S. Halicioglu and A. Harmanci) Modules in which inverse images of some submodules are direct summand, Comm. Algebra 44(4)(2016), 1496-1513.
-
(A.Harmanci, H. Kose and Y. Kurtulmaz) On $\pi$-morphic modules, Hacettepe J. Math. Stat. 42(4)2013, 411-418.
-
(O. Gurgun, S. Halicioglu and A. Harmanci) Strong $J$-Cleanness of Formal Matrix Rings, accepted to publish in Advanced Studies in Contemporary Mathematics, 24 (4) (2014), 483-498.
-
(Kose,H., Ungor,B., Halicioglu,S. and Harmanci,A.) Quasi-Reduced Rings,Acta Univ.Apulensis Math. Inform.,34(2013),57-68.
-
(B.Ungor, S. Halicioglu and A.Harmanci) Rickart modules relative to singular submodule and dual Goldie torsion theory, J.Algebra Appl. 15(8)(2016).
-
(B. Ungor and A. Harmanci) Rickart Modules Determined by Preradicals \bar Z(.) and delta(.), An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(N.S). Tomu LXII,2(3)(2016), 807-822.
-
(H. Kose, B. Ungor and A. Harmanci), On Weak Symmetric Property of Rings, Southeast Asian Bulletin of Mathematics, 42(1)(2018), 31-40.
-
(M. B. Calci, B. Ungor and A. Harmanci), Central Quasipolar Rings, Rev. Colombiana Mat. 49(2)(2015), 281-292.
-
(T. Pekacar Calci, S. Halicioglu and A. Harmanci) A Generalization of J-Quasipolar Rings, Miskolc Math., 18(2017), no 1, 155165.
-
(M. Hosseinpour, B. Ungor, Y. Talebi and A. Harmanci), A generalization of a class of principally lifting modules, appears in Rocky Mountain Journal of Math., 47(5)(2017),1539-1563.
-
(H. Kose, B. Ungor and A. Harmanci) Nil-reflexive rings, Commun. Fac.Sci.Ank.Ser.A1 Math.Stat. 65(1)(2016), 19-33.
-
(T. Pekacar Calci, A. Harmanci and B. Ungor) An approach to quasipolarity for rings along nilpotent elements, Bol. Soc. Mat. Mex., 24(2018), 95-106
-
(A. Harmanci and B. Ungor) Modules decompositions arising via Rickart modules, Algebra Discrete Math.,26(1)(2018), 47-64. 115. (B. Ungor, S. Halicioglu and A. Harmanci) A dual approach in the theory of inverse split modules, Journal of Algebra and Its Appl., 17(8)(2018)(17 pages)DOI:10.1142/S0219498818501487.
-
(H. Kose, Y.Kurtulmaz, B. Ungor and A. Harmanci) Rings have normality in terms of the Jacobson radical, Arab. J. Math.https:// doi.org/10. 1007//s40065-018-0231-7, (2018).
-
(M. Burak Calci, S. Halicioglu and A. Harmanci) A class of J-quasipolar rings, J. Algebra and Related Topics, 3(2)(2015), 1-15.
-
(T. Pekacar Calci, S. Halicioglu and A. Harmanci) Modules having Baer summands, Communications in Algebra, 45(11)(2017), 4610-4621.
-
(T. Pekacar Calci, B. Ungor and A. Harmanci) Generating dual Baer modules via fully invariant submodules, Accepted by Quaest. Math.. DOI10.2980/16073606.2018.1508523.
-
(M. Burak Calci, H. Chen, S. Halicioglu and A. Harmanci) Reversibility of Rings with respect to the Jacobson Radical, Mediterr. J. Math. (2017) 14:137 DOI 10.1007/s00009-017-0938-2 1660-5446/17/030001-14.
-
(M. Burak Calci, S. Halicioglu and A. Harmanci and B. Gungor), Prime structures in a Morita context, Accepted to publish in Boletín de la Sociedad Matemática Mexicana (BSMM).
-
(H. Kose, Y. Kurtulmaz, B. Ungor and A. Harmanci) A perspective on amalgamated rings via symmetricity, AMS, Contemporary Mathematics,Vol. 727, 2019.
-
(Y. Talebi, A.R.M. Hamzekolaee, M. Hasseinpour, A. Harmanci and B.Ungor) Rings for which every cosingular module is projective, Hacettepe J. Math. and Stat., 48(4)(2019), 973-984.
-
(Y. Talebi, A.R.M. Hamzekolaee, M. Hasseinpour, A. Harmanci and B.Ungor), Rings for which every cosingular module is discrete, Hacettepe Journal of Mathematics & Statistics, Hacet. J. Math. Stat. Volume XX (x) (2019), 1 – 14
-
(H. Kose and A. Harmanci), On A Class of Semicommutative Rings, New Zealand Journal Of Mathematics, Volume 47 (2017), 69-85..
-
(B. Ungor, S. Halicioglu and A. Harmanci), Direct sum order in regular modules, Journal of Algebra and Applications, Vol. 19, No. 09, 2050178 (2020), https://doi.org/10.1142/S0219498820501789.
-
(T. Pekacar Calci, B. Ungor and A. Harmanci), Modules which are split by images of their fully invariant submodule, Submitted for publication.
-
(B.Ungor, S. Halicioglu, A. Harmanci and J. Marovt), On some partial orders in regular modules, Communications in Algebra, 48(10) (2020), 4542-4553.
-
(M, Calci, S. Halicioglu and A. Harmanci), Strong P-cleanness of trivial Morita contexts, Comm. Korean Math.Society.34(4)(2019),1069-1078,
-
(M, Calci, S. Halicioglu and A. Harmanci), Quasi-polarity of special Morita contexts, Miskolc Mathematical Notes, 19(1) (218),273-289. DOI:10.18514/MMN.2018.2288
-
(T. Pekacar, S. Halicioglu and A. Harmanci), Symmetric property of rings with respect to the Jacobson radical, Accepted to publish in Communications of the Korean Mathematical Society, 34(2019), No.1,pp. 43-54.
-
(A.Harmanci and H. Kose), On A Class Of Semicommutative Rings, New Zealand Journal Of Mathematics, Volume 47 (2017), 69-85. .
-
(S. Halicioglu, A. Harmanci and B. Ungor), A Class of Abelian Rings, submitted for publication.
-
(H. Kose, B. Ungor, Y. Kurtulmaz and A. Harmanci), Semicommutativity of Amalgamated Rings, Journal of math. research and applications, 38(4)(2018),366-376.
-
(H. Kose and A. Harmanci), Central CNZ Rings, Published in: Trans. of NAS Azerbaycan, Issue Math.' Series
-
Physical=Technical and Mathematical Sciences.
-
(A. Harmanci, H. Kose, Y. Kurtulmaz and B. Ungor), Reflexivity of rings via nilpotent elements, REVISTA DE LA UNION MATEMATICA ARGENTINA Vol. 61, No. 2, 2020, Pages 277–290. Published online: November 11, 2020, https://doi.org/10.33044/revuma.v61n2a06.
-
(B. Ungor, H. Kose, Y. Kurtulmaz and A. Harmanci), A nil approach to symmetricity of rings, Indian Journal of Mathematics, Vol.60, No.2, (2018), 337-357..
-
(O. Gurgun, S. Halicioglu and A. Harmanci), Quasipolarity of special Morita context rings, Miskolc Mathematical Notes,19(2018), 273-289.
-
(H. Chen, S. Halicioglu, A. Harmanci and Y. Kurtulmaz), Rings in which elements are a sum of a central and a unit element, Bull.Belg.Math.Soc., Simon Stevin, 4 (2019), 619-631.
-
(B. Üngör, S. Halicioglu, A. Harmanci and J. Marovt), Partial orders on the power sets of Baer rings, Journal of Algebra and Its Applications (2020) 2050011 (14 pages) .
-
(A.R.M. Hamzekolaei, A. Harmanci, Y. Talebi and B.Ungor), A new approach to H-supplemented modules via homomorphisms, Turkish J. Math., 42(2018), 1941-1955.
-
(Sait Halicioglu, Abdullah Harmanci, and Burcu Ungor), A class of abelian rings, Boletin de Matematicas, 25(1)(2018), 27-37. 143. (B. Ungor, H. Kose and A. Harmanci), Semicommutattivity of rings by the way of idempotents, Filomat 33:11 (2019), 3497– 3508 https://doi.org/10.2298/FIL1911497K.
-
(B. Ungor, S. Halicioglu, A. Harmanci and J. Marovt), Minus partial order in regular modules, Communications in Algebra Volume 48, 2020 - Issue 10, 4542-4553.
-
(H. Kose, B. Ungor, S. Halıcıoglu, A. Harmancı), A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci.38(2014), 43-48.
-
(Yosum Kurtulmaz, Sait Halicioglu, A. Harmancı and Huanyin Chen), Rings in which elements are a sum of a central and a unit element, Bull. Belg. Math. Soc. Simon Stevin Volume 26, Number 4 (2019), 619-631.
-
(Handan Kose, Burcu Ungor and Abdullah Harmancı), Semicommutativity of Rings by the way of Idempotents, Filomat, 33(11) (2019), 3497-3508. .
-
(B. Ungor, S. Halıcıoglu, A. Harmancı), Shorted operators with respect to a partial order in a dual module, Operators and Matrices, 14(1) (2020), doi:10.715.3/oam-2020-14-14.
-
(G. Dolinar, S. Halıcıoglu, A. Harmancı, B, Kuzma, J. Marovt and B. Ungor), Preservers of left-star and right-star partial orders, Linear Algebra and its applications, 587(2020),70-91.
-
(A. Harmanci, H. Kose, and B. Ungor), Symmetricity and reversibility from the perspective of nilpotents, has been accepted for publication at Communications of the Korean Mathematical Society.
-
Burcu Ungor, Sait Halicioglu, Abdullah Harmanci and Janko Marovt, On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96/1-2 (2020), 149-159. DOI:10.5486/PMD.2020.8634
-
B. Ungor, S. Halicioglu, A. Harmanci, The direct sum order in regular modules, J. Algebra Appl., accepted, DOI: 10.1142/S0219498820501789. (SCI-Expanded).
-
Abdullah Harmanci, Yosum Kurtulmaz and Burcu Üngör, Duo property for rings by the quasinilpotent perspective, CarpathianMathematical Publications,13(2)(2021) 485-500, DOÄ°: https://orcid.org/0000-0001-6089-4366.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, Reversible ring property via idempotent elements, Georgian MathematicalJournal, https://doi.org/10.1515/gmj-2022-2189.
-
Tugce Pekacar Calci, Burcu Ungor, Abdullah Harmanci, Module decompositions by images of fully invariant submodules, Filomat 35:11 (2021), 3679–3687 https://doi.org/10.2298/FIL2111679P.
-
Savci R. Argun, TuÄŸçe P. Çalcı, Sait Halicioglu, Abdullah Harmanci and Burcu Ungor, Lattice properties of the minus order irregular modules, June 2021, Rocky Mountain Journal of Mathematics 52(1), DOI: 10.1216/rmj.2022.52.15
-
I. Baydar, B. Ungor, S. Halicioglu and A. Harmanci, Fusible Modules, Accepted to publish in Hacettepe Journal of Mathematics and Statistics.
-
Abdullah Harmanci, Yosum Kurtulmaz and Burcu Ungor, Rings which are duo on Zhou radical, São Paulo Journal of Mathematical Sciences https://doi.org/10.1007/s40863-022-00323-x.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, e-reversibility of rings via quasinilpotents, Georgian Mathematical Journal,https://doi.org/10.1515/gmj-2023-2045.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, On strongly quasipolar rings, Submitted for publication.
-
T. Pakel, T. P. Calcı, S. Halicioglu, A. Harmanci, and B. Ungor, The natural partial order on modules, Submitted for publication.
Y for Genealogy
Go to: https://www.mathgenealogy.org/id.php?id=79525
Mathematical Journals.
Go to : International Electronic Journal of Algebra(IEJA)
see this page for: The International Electronic Journal of Algebra, www.ieja.net
.
I am a member of Editorial Board for the Journals:
International Electronic Journal of Algebra
​
Algebras, Groups, Geometries
​
Welcome to submit your papers to me for possible publication in one of these journals!
Latex ve Latex simgeleri ile ilgili sayfalar ve bilgiler:
​
Bilim Uzmani Ogrencilerim(My MS. Students)
​
​
Doktora grencilerim(My PhD. Students):
​
Agayev, Nazým :Hacettepe Üniversitesi 2006
Calci, Mete: Ankara University 2019
Calci, Tugce: Ankara University 2021
Celik, Cesim: Hacettepe Üniversitesi 1995
Güngöroglu, Gonca: Hacettepe Üniversitesi 1997
Gurgun, Orhan: Ankara University 2016
Kosan, M.: Hacettepe Üniversitesi 2005
Leghwel, Abdurzak: Hacettepe Üniversitesi 2006
Ozcan, Ayse: Hacettepe Üniversitesi 1991
Tütüncü, Derya: Hacettepe Üniversitesi 1999
Üngör, Burcu: Ankara University 2014
Prof. Dr. Abdullah Harmanci
Welcome visitors to my site. I am a retired professor of Algebra.
I am still very active and publishing.
My Resume
and publications
ÖzgecmiÅŸ
DoÄŸum : Konya-Akören 1944.
Lisans :1968 Ege Universitesi Matematik Bölümü.
Bilim Uzmanligi(MS) : 1971-1973 California Universitesi, Santa Barbara Kampusu, ABD.
Doktora(PhD) : 1974 Hacettepe Universitesi, Ankara.
Doçent : 1980 Hacettepe Universitesi, Ankara.
Profesör : 1988 Hacettepe Universitesi, Ankara.
Gorevlendirmelerim:
(1). 1978 de 6 ay, Ottawa Universitesi, Canada.
(2). 1989 da 15 gün Bar Ilan Universitesi, Israil.
(3). 1990 da 5 ay Glasgow Universitesi, Ingiltere.
(4). 1991 de 50 gun Glasgow Universitesi, Ingiltere.
(5). 1992 de 45 gun Glasgow Universitesi, Ingiltere.
Yayinlar : Prof. Dr. Abdullah Harmanci;
-
On the commutativity of some class of rings. J. Austral. Math. Soc. Ser. A 21 (1976), no. 3, 376-380.
-
Two elementary commutativity theorems for rings. Acta Math. Acad. Sci. Hungar. 29(1977), no. 1-2, 23-29.
-
On the strongly regular near-rings, Hacettepe Bull. of Sciences, 4(1975),118-122.
-
On the commutativity of Rings with Polynomial constraints, Hacettepe Bull. of Sciences, 5(1976),8-11.
-
Degismeli Cebire Giris (Ceviri : An Introduction to Commutative, Algebra, Atiyah-McDonald) Hacettepe Universitesi Yayini, 1980.
-
Cebir I, Hacettepe Universitesi Yayini,1987.
-
Cebir II, Hacettepe Universitesi Yayini, 1987.
-
On a class of Schur AW*-algebras. Acta Math. Hungar. 41(1983), no. 3-4, 279-281.
-
Matrix Baer *-Rings, Hacettepe Bull. of Sciences, 15, 61-67, 1986.
-
Some remarks on the commutativity of rings, Hacettepe Bull. of Sciences, 15(1986),69-75.
-
(A. Harmanci and P. F. Smith) Relative injectivity and module classes. Comm. Algebra 20 (1992), no. 9, 2471-2501.
-
( P. F. Smith and A. Harmanci) Finite direct sums of CS-modules. Houston J. Math. 19 (1993), no. 4, 523-532.
-
(Y. Tiras, A. Tercan and A. Harmanci) Prime modules. Honam Math. J. 18 (1996), no. 1, 5-15.
-
(With P. F. Smith, Y. Tiras, and A. Tercan) CS-Moduller, TBAG-1200 Proje 1995.
-
(With P. F. Smith, Y. Tiras, and A. Tercan) The Bass-Papp theorem and some related results. Vietnam J. Math. 25 (1997), no. 1,33-39.
-
16. (With P. F. Smith, Y. TiraÅŸ, and A. Tercan) Direct sums of CS-modules. Houston J. Math. 22(1996), no. 1, 61-71.
-
(With P. F. Smith and C. Celik) A generalization of CS-modules. Comm. Algebra 23(1995), no. 14, 5445-5460.
-
(With Y. Tiras and A. Tercan) A study of prime submodules and the classification of prime submodules of an Artinian module.Far East J. Math. Sci. 2 (1994), no. 2, 191-199.
-
(With G. Gungoroglu) Coatomic modules over Dedekind domains. Hacet. Bull. Nat. Sci. Eng. Ser. B 28(1999), 25-29.
-
(With D. Keskin and P. F. Smith) On delta-supplemented Modules, Acta Math. Hungar. 83 (1999), no. 1-2, 161-169.
-
(With A. C. Ozcan) A Characterization of some rings by functor Z*( ). Turkish J. Math. 21(1997), no. 3, 325-331.
-
(With Y. Tiras) On prime submodules and primary decomposition. Czechoslovak Math. J. 50(125) (2000), no. 1, 83-90.
-
(Y. Tiras, A. Harmanci and P. F. Smith) A characterization of prime submodules. J. Algebra 212 (1999), no. 2, 743-752.
-
(G. Gungoroglu and A. Harmanci) On some classes of modules. Czechoslovak Math. J. 50(125) (2000), no. 4, 839-846.
-
(Y. Tiras, A. Harmanci, P. F. Smith) Some remarks on dense submodules of multiplication modules.Comm. Algebra 28 (2000), no. 5, 2291-2296.
-
(G. Gungoroglu - A. Harmanci) Soyut Cebir'e Giris Dersleri, Problemler ve Cozumleri, Kasim 1999.
-
(G. Gungoroglu - A. Harmanci) Lineer Cebir Dersleri, Problemler ve Cozumleri, Ocak 2000.
-
(Eroglu, Nuray; Tercan, Adnan; Harmanci, Abdullah) Modules for which every submodule has a unique d-closure. Hacet. Bull. Nat. Sci. Eng. Ser. B 29 (2000), 23-29.
-
(N. Eroglu, A. Tercan and A. Harmanci) d-Normal Modules, Hacettepe Nat. and Science Bulletin, Series B, 29(2001), 23-29.
-
(A. C. Ozcan and A. Harmanci) The torsion theory generated by M-small modules. Algebra Colloq. 10 (2003), no. 1, 41-52.
-
(D. Keskin and A. Harmanci) A relative version of the lifting property of modules. Algebra Colloq. 11 (2004), no. 3, 361-370.
-
(M. Alkan and A. Harmanci) On summand sum and summand intersection property of modules. Turkish J. Math. 26 (2002), no. 2, 131-147.
-
(G. Gungoroglu and A. Harmanci) Copolyform Modules. Preprint. (T. Kosan and A. Harmanci) Modules that are lifting relative to module classes. Kyungpook Math. J. 48 (2008), no. 1, 63-71.
-
(T. Kosan and A. Harmanci) Modules supplemented relative to a torsion theory. Turkish J. Math. 28 (2004), no. 2, 177-184.
-
(T. Kosan and A. Harmanci) Decompositions of modules supplemented relative to a torsion theory. Internat. J. Math. 16 (2005), no. 1, 43-52.
-
(T. Kosan and A. Harmanci) $\oplus$--supplemented modules relative to a torsion theory. New Zealand J. Math. 35 (2006), no. 1, 63-75.
-
(G. G ng roglu, T. Kosan and A. Harmanci) On some torsion classes in \Sigma[M], Far East J. Math. Sci. (FJMS) 13 (2004), no: 1, 39-53.
-
(T. Kosan and A. Harmanci) $\deta-$lifting and $\delta$-supplemented modules. Submitted to publication.
-
(T.Kosan and A.Harmanci), Generalizations of coatomic modules. Cent. Eur. J. Math. 3 (2005), no. 2, 273-281.
-
(T. Kosan, N. Agayev, A. Leghwel, and A. Harmanci) Duo modules and duo rings. Far East J. Math. Sci. (FJMS) 20(2006), no. 3, 341-346.
-
(A. Leghwel and A. Harmanci) CSSES-Modules and CSSES Rings, Gazi Univ. Journal of Science, 18(3),2005, 381-391.
-
(Nazim Agayev, Abdurzak Leghwel and Abdullah Harmanci) On a generalization of injective modules with IN-conditions. Far East J. Math. Sci. (FJMS) 16 (2005), no. 3, 395-408.
-
(A. Hamdouni, A. C. Ozcan and A. Harmanci) Characterization of modules and rings by the summand intersection property and the summand sum property. JP J. Algebra Number Theory Appl. 5 (2005), no. 3, 469-490.
-
(S. Dogruoz and A. Harmanci) \tau-Extending Modules Related to Extendings, Preprint.
-
(M. Baser and A. Harmanci) \alpha-Semicommutative Rings, Preprint.
-
(T. Kosan, M. Baser and A. Harmanci) Quasi-Armendariz Modules, Submitted for publication.
-
(T. Kosan and A. Harmanci) Pseudo-Frobenius Module and Rings, Submitted for publication.
-
(M. Baser and A. Harmanci) Reduced and p.q.-Baer modules. Taiwanese J. Math. 11 (2007), no. 1, 267-275.
-
(A. Leghwel and A. Harmanci) A note on semiperfect CS-rings with essential socle, submitted for publication.
-
(T. Kosan and A. Harmanci) Fully Invariant Submodules And Projection Invariant Submodules, Accepted to publish in International J. Math.
-
(M. Baser, A. Harmanci and T. K. Kwak) Generalized semicommutative rings and their extensions. Bull. Korean Math. Soc. 45,(2008), no. 2, 285-297.
-
(M. Baser and A. Harmanci) On quasi-Baer and p.q.-Baer modules. Kyungpook Math. J. 49 (2009), no. 2, 255-263.
-
(A. C. Ozcan, A. Harmanci and P. F. Smith) Duo modules. Glasg. Math. J. 48 (2006), no. 3, 533-545.
-
(S. Dogruoz, A. Harmanci and P. F. Smith) Modules with unique closure relative to a torsion theory. Canad. Math. Bull. 53,(2010), no. 2, 230-238.
-
(N. Agayev and A. Harmanci) On semicommutative modules and rings. Kyungpook Math. J. 47 (2007), no. 1, 21 30.
-
(S. Dogru öz, A. Harmanci and P. F. Smith) Modules with unique closure relative to a torsion theory. II. Turkish J. Math. 33, (2009), no. 2, 111-116.
-
(H. K. Yoldas, S. Halicioglu and A. Harmanci) McCoy Modules, Submitted for publication.
-
(N. Agayev, S. Halicioglu and A. Harmanci) On reduced modules. Commun. Fac. Sci. Univ. Ank. S r. A1 Math. Stat. 58 (2009), no. 1, 9-16.
-
(S. Halicioglu, N. Agayev and A. Harmanci) On symmetric modules. Riv. Mat. Univ. Parma (8) 2 (2009), 91-99.
-
(N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu) Abelian modules. Acta Math. Univ. Comenian. (N.S.) 78 (2) (2009), 235-244.
-
(N. Agayev, A. Harmanci and S. Halicioglu) On abelian rings. Turkish J. Math. 34 (2010), no. 4, 465-474.
-
(N. Agayev, T. zen and A. Harmanci) On a class of semicommutative modules. Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 149-158.
-
(N. Agayev, T. Ozen and A. Harmanci) On a class of semicommutative rings. Kyungpook Math. J. 51 (2011), no. 3, 283-291.
-
(N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu) Central Armendariz rings. Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 137-145.
-
(N. Agayev, A. Harmanci and S. Halicioglu) Extended Armendariz rings. Algebras Groups Geom. 26 (2009), no. 4, 343-354.
-
(H. Inankil, A. Harmanci and S. Halicioglu) On a class of lifting modules. Vietnam J. Math. 38 (2010), no. 2, 189-201.
-
(U. Acar and A. Harmanci) Soft Ideals of Soft WS-Algebras, TWMS J. of Pure and Applied Math.,4(2)(2013) 426-436.
-
(Ungor, B., Halicioglu, S., Kamal M. A. and Harmanci, A.) Strongly Large Module Extensions, An.Stiint.Univ.Al.I.Cuza Iasi. Mat., (N.S.)59(2) (2013), 431-452.
-
(U. Acar and A. Harmanci) Principally supplemented modules. Albanian J. Math. 4 (2010), no. 3, 79 88.
-
(Buhphang, A.M., Halicioglu, S., Harmanci, A., Singh, K.H., Kose, H.Y. and Rege, M.B.) On Rigid Modules, East-West J.of Math.15(1)(2013), 71-85.
-
(N. Agayev, A. Harmanci and S. Halicioglu) On Rickart modules. Bull. Iranian Math. Soc. 38 (2012), no. 2, 433 445.
-
(S. Dogruoz, A. Harmanci and P. F. Smith) Modules with Unique Closure Relative to a Torsion Theory III, Ukrainian Mathematical Journal, 66(2014),1028–1036.
-
(B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci) On principally quasi-Baer modules. Albanian J. Math. 5 (2011), no. 3, 165173.
-
(H. Inankil, S. Halicioglu and A. Harmanci) A generalization of supplemented modules. Algebra Discrete Math. 11 (2011), no. 1, 59-74.
-
(H. Kose, B. Ungor, S. Halicioglu and A. Harmanci) A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci. 38(1), (2014), 43-48.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) On Generalized Principally Quasi-Baer Modules, Bol. Mat. 20(1), (2013), 51-62.
-
(U. Acar and A. Harmanci) Principally H-Supplemented Modules, Submitted for publication.
-
(G. Kafkas, B. Ungor, S. Halicioglu and A. Harmanci) Generalized symmetric rings. Algebra Discrete Math. 12 (2011), no. 2, 7284.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) Dual pi-Rickart modules. Rev. Colombiana Mat. 46 (2012), no. 2, 167-183.
-
(U. Acar and A. Harmanci) On A Class of H-Supplemented Modules, Accepted for publication in Algebras, Groups, and Geometries.
-
(B. Ungor, G. Kafkas, S. Halicioglu and A. Harmanci) Some properties of Rickart modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 61(2012), no. 2, 1-8.
-
(Agayev,N., Ungor B., Halicioglu,S. and Harmanci, A.) Modules which are reduced over their endomorphism rings, Thai Journal of Mathematics,13(1)(2015), 177-188.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) Symmetric Modules over their endomorphism rings, Algebra Discrete Math. 19(2)(2015), 283-294..
-
(B. Ungor, S. Halicioglu and A. Harmanci) Extensions of Baer and Principally Projective Modules, Gazi Univ.J.Sci.,25(4)(2012) 863-867.
-
(B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci) Endo-principally projective modules. Novi Sad J. Math. 43 (2013), no. 1, 41 49.
-
(Ungor, B., Halicioglu, S., Kose, H. and Harmanci, A.) Rings in which every nilpotent element is central, Algebras,Groups and Geometries, 30(1)(2013), 1-18.
-
(Ungor,Burcu; Halicioglu,Sait; Harmanci,Abdullah) A Generalization of Rickart modules, Bull.Belgium Math.Soc.Simon Stevin, 21(2)(2014),303-318.
-
(B. Ungor, Halicioglu,Sait, A. Harmanci) On a class of $\delta$-supplemented modules, Bull. Malays.Sci.Soc., Bull. Malays. Math. Sci. Soc. (2)37(3)(2014), 703-717.
-
(B. Ungor; S. Halicioglu; A. Harmanci) Generalized Rigid Rings, Submitted for publication.
-
(H. Chen, A. Harmanci and A. Ozcan) Strongly $J$-Clean Rings, Ring Theory and Its App., Edited by: D. V. Huynh, S. K. Jain, S. R. Lopez-Permouth,S. T. Rizvi and C. S. Roman, March 2014.
-
(B. Ungor, S. Halicioglu and A. Harmanci) Rickart Modules Relative Goldie Torsion Theory, submitted for publication.
-
(H. Chen, A. Harmanci and A. Ozcan) Strongly J-clean rings with involutions, Ring theory and its applications, 33–44, Contemp. Math., 609, 2014.
-
(H. Chen, O. Gurgun, S. Halicioglu and A.Harmanci) Rings in which nilpotents belong to Jacobson Radical, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si Mat. (N.S.) Tomul LXII, 2016, f. 2, vol. 2.
-
(B. Ungor, S. Halicioglu and A. Harmanci) On a class of $\oplus$-supplemented modules, Ring Theory and Its App.Edited by: D. V. Huynh, S. K. Jain, S. R. Lopez-Permouth,S. Tariq Rizvi and Cosmin. and S. Roman, March 2014.
-
(H. Chen and A. Harmanci) Strongly *-Clean Properties and Rings of Functions, Commun.Fac.Sci. Univ.Ank.Series A1, 67(1), (2018), 102-115.
-
(B. Ungor, O. Gurgun, S. Halicioglu and A. Harmanci) Feckly Reduced Rings, Hacet. J. Math. Stat. 44(2)(2015), 375-384.
-
(A. Harmanci, S. R. Lopez-Permouth, and B. Ungor) On the pure-injectivity profile of a ring, Comm. Algebra 43(11)(2015), 49845002.
-
(Gurgun,O., Halicioglu,S. and Harmanci, A.) Quasipolar Subrings of 3x3 Matrix Rings, Analele.St.Univ.Ovidius Constanta,21(3) (2013),133-146.
-
(O. Gurgun, S. Halicioglu and A.Harmanci) Quasipolarity of Generalized Matrix Rings, :https://www.researchgate.net/publication/258817348.
-
(Halicioglu Sait, Gurgun Orhan and Harmanci Abdullah) On Nil-quasipolar Rings, Boletín de la Sociedad Matemática Mexicana · April 2014 DOI: 10.1007/s40590-014-0005-y.
-
(B. Ungor, S. Halicioglu and A. Harmanci) Modules in which inverse images of some submodules are direct summand, Comm. Algebra 44(4)(2016), 1496-1513.
-
(A.Harmanci, H. Kose and Y. Kurtulmaz) On $\pi$-morphic modules, Hacettepe J. Math. Stat. 42(4)2013, 411-418.
-
(O. Gurgun, S. Halicioglu and A. Harmanci) Strong $J$-Cleanness of Formal Matrix Rings, accepted to publish in Advanced Studies in Contemporary Mathematics, 24 (4) (2014), 483-498.
-
(Kose,H., Ungor,B., Halicioglu,S. and Harmanci,A.) Quasi-Reduced Rings, Acta Univ.Apulensis Math. Inform.,34(2013),57-68.
-
(B.Ungor, S. Halicioglu and A.Harmanci) Rickart modules relative to the singular submodule and dual Goldie torsion theory, J. Algebra Appl. 15(8)(2016).
-
(B. Ungor and A. Harmanci) Rickart Modules Determined by Preradicals \bar Z(.) and delta(.), An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(N.S). Tomu LXII,2(3)(2016), 807-822.
-
(H. Kose, B. Ungor and A. Harmanci), On Weak Symmetric Property of Rings, Southeast Asian Bulletin of Mathematics, 42(1)(2018), 31-40.
-
(M. B. Calci, B. Ungor and A. Harmanci), Central Quasipolar Rings, Rev. Colombiana Mat. 49(2)(2015), 281-292.
-
(T. Pekacar Calci, S. Halicioglu and A. Harmanci) A Generalization of J-Quasipolar Rings, Miskolc Math., 18(2017), no 1, 155165.
-
(M. Hosseinpour, B. Ungor, Y. Talebi, and A. Harmanci), A generalization of a class of principally lifting modules, appears in Rocky Mountain Journal of Math., 47(5)(2017),1539-1563.
-
(H. Kose, B. Ungor and A. Harmanci) Nil-reflexive rings, Commun. Fac.Sci.Ank. Ser.A1 Math.Stat. 65(1)(2016), 19-33.
-
(T. Pekacar Calci, A. Harmanci and B. Ungor) An approach to quasipolarity for rings along nilpotent elements, Bol. Soc. Mat. Mex., 24(2018), 95-106
-
(A. Harmanci and B. Ungor) Modules decompositions arising via Rickart modules, Algebra Discrete Math.,26(1)(2018), 47-64. 115. (B. Ungor, S. Halicioglu, and A. Harmanci) A dual approach in the theory of inverse split modules, Journal of Algebra and Its Appl., 17(8)(2018)(17 pages)DOI:10.1142/S0219498818501487.
-
(H. Kose, Y.Kurtulmaz, B. Ungor and A. Harmanci) Rings have normality in terms of the Jacobson radical, Arab. J. Math. https:// doi.org/10. 1007//s40065-018-0231-7, (2018).
-
(M. Burak Calci, S. Halicioglu and A. Harmanci) A class of J-quasipolar rings, J. Algebra and Related Topics, 3(2)(2015), 1-15.
-
(T. Pekacar Calci, S. Halicioglu and A. Harmanci) Modules having Baer summands, Communications in Algebra, 45(11)(2017), 4610-4621.
-
(T. Pekacar Calci, B. Ungor and A. Harmanci) Generating dual Baer modules via fully invariant submodules, Accepted by Quaest. Math.. DOI10.2980/16073606.2018.1508523.
-
(M. Burak Calci, H. Chen, S. Halicioglu and A. Harmanci) Reversibility of Rings with respect to the Jacobson Radical, Mediterr. J. Math. (2017) 14:137 DOI 10.1007/s00009-017-0938-2 1660-5446/17/030001-14.
-
(M. Burak Calci, S. Halicioglu and A. Harmanci and B. Gungor), Prime structures in a Morita context, Accepted to publish in Boletín de la Sociedad Matemática Mexicana (BSMM).
-
(H. Kose, Y. Kurtulmaz, B. Ungor and A. Harmanci) A perspective on amalgamated rings via symmetricity, AMS, Contemporary Mathematics,Vol. 727, 2019.
-
(Y. Talebi, A.R.M. Hamzekolaee, M. Hasseinpour, A. Harmanci and B.Ungor) Rings for which every cosingular module is projective, Hacettepe J. Math. and Stat., 48(4)(2019), 973-984.
-
(Y. Talebi, A.R.M. Hamzekolaee, M. Hasseinpour, A. Harmanci and B.Ungor), Rings for which every cosingular module is discrete, Hacettepe Journal of Mathematics & Statistics, Hacet. J. Math. Stat. Volume XX (x) (2019), 1 – 14
-
(H. Kose and A. Harmanci), On A Class of Semicommutative Rings, New Zealand Journal Of Mathematics, Volume 47 (2017), 69-85..
-
(B. Ungor, S. Halicioglu and A. Harmanci), Direct sum order in regular modules, Journal of Algebra and Applications, Vol. 19, No. 09, 2050178 (2020), https://doi.org/10.1142/S0219498820501789.
-
(T. Pekacar Calci, B. Ungor and A. Harmanci), Modules which are split by images of their fully invariant submodule, Submitted for publication.
-
(B.Ungor, S. Halicioglu, A. Harmanci and J. Marovt), On some partial orders in regular modules, Communications in Algebra, 48(10) (2020), 4542-4553.
-
(M, Calci, S. Halicioglu and A. Harmanci), Strong P-cleanness of trivial Morita contexts, Comm. Korean Math.Society.34(4)(2019),1069-1078,
-
(M, Calci, S. Halicioglu and A. Harmanci), Quasi-polarity of special Morita contexts, Miskolc Mathematical Notes, 19(1) (218),273-289. DOI:10.18514/MMN.2018.2288
-
(T. Pekacar, S. Halicioglu and A. Harmanci), Symmetric property of rings with respect to the Jacobson radical, Accepted to publish in Communications of the Korean Mathematical Society, 34(2019), No.1, pp. 43-54.
-
(A.Harmanci and H. Kose), On A Class Of Semicommutative Rings, New Zealand Journal Of Mathematics, Volume 47 (2017), 69-85.
-
(S. Halicioglu, A. Harmanci and B. Ungor), A Class of Abelian Rings, submitted for publication.
-
(H. Kose, B. Ungor, Y. Kurtulmaz and A. Harmanci), Semicommutativity of Amalgamated Rings, Journal of Math. research and applications, 38(4)(2018),366-376.
-
(H. Kose and A. Harmanci), Central CNZ Rings, Published in: Trans. of NAS Azerbaycan, Issue Math.' SeriesPhysical=Technical and Mathematical Sciences.
-
(A. Harmanci, H. Kose, Y. Kurtulmaz and B. Ungor), Reflexivity of rings via nilpotent elements, REVISTA DE LA UNION MATEMATICA ARGENTINA Vol. 61, No. 2, 2020, Pages 277–290. Published online: November 11, 2020, https://doi.org/10.33044/revuma.v61n2a06.
-
(B. Ungor, H. Kose, Y. Kurtulmaz and A. Harmanci), A nil approach to symmetricity of rings, Indian Journal of Mathematics, Vol.60, No.2, (2018), 337-357..
-
(O. Gurgun, S. Halicioglu and A. Harmanci), Quasipolarity of special Morita context rings, Miskolc Mathematical Notes,19(2018), 273-289.
-
(H. Chen, S. Halicioglu, A. Harmanci and Y. Kurtulmaz), Rings in which elements are a sum of a central and a unit element, Bull.Belg.Math.Soc., Simon Stevin, 4 (2019), 619-631.
-
(B. Üngör, S. Halicioglu, A. Harmanci and J. Marovt), Partial orders on the power sets of Baer rings, Journal of Algebra and Its Applications (2020) 2050011 (14 pages) .
-
(A.R.M. Hamzekolaei, A. Harmanci, Y. Talebi and B.Ungor), A new approach to H-supplemented modules via homomorphisms, Turkish J. Math., 42(2018), 1941-1955.
-
(Sait Halicioglu, Abdullah Harmanci, and Burcu Ungor), A class of abelian rings, Boletin de Matematicas, 25(1)(2018), 27-37. 143. (B. Ungor, H. Kose and A. Harmanci), Semicommutattivity of rings by the way of idempotents, Filomat 33:11 (2019), 3497– 3508 https://doi.org/10.2298/FIL1911497K.
-
(B. Ungor, S. Halicioglu, A. Harmanci and J. Marovt), Minus partial order in regular modules, Communications in Algebra Volume 48, 2020 - Issue 10, 4542-4553.
-
(H. Kose, B. Ungor, S. Halıcıoglu, A. Harmancı), A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci.38(2014), 43-48.
-
(Yosum Kurtulmaz, Sait Halicioglu, A. Harmancı and Huanyin Chen), Rings in which elements are a sum of a central and a unit element, Bull. Belg. Math. Soc. Simon Stevin Volume 26, Number 4 (2019), 619-631.
-
(Handan Kose, Burcu Ungor and Abdullah Harmancı), Semicommutativity of Rings by the way of Idempotents, Filomat, 33(11) (2019), 3497-3508.
-
(B. Ungor, S. Halıcıoglu, A. Harmancı), Shorted operators with respect to a partial order in a dual module, Operators and Matrices, 14(1) (2020), doi:10.715.3/oam-2020-14-14.
-
(G. Dolinar, S. Halıcıoglu, A. Harmancı, B, Kuzma, J. Marovt and B. Ungor), Preservers of left-star and right-star partial orders, Linear Algebra and its applications, 587(2020),70-91.
-
(A. Harmanci, H. Kose, and B. Ungor), Symmetricity and reversibility from the perspective of nilpotents, has been accepted for publication at Communications of the Korean Mathematical Society.
-
Burcu Ungor, Sait Halicioglu, Abdullah Harmanci and Janko Marovt, On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96/1-2 (2020), 149-159. DOI:10.5486/PMD.2020.8634
-
B. Ungor, S. Halicioglu, A. Harmanci, The direct sum order in regular modules, J. Algebra Appl., accepted, DOI: 10.1142/S0219498820501789. (SCI-Expanded).
-
Abdullah Harmanci, Yosum Kurtulmaz and Burcu Üngör, Duo property for rings by the quasinilpotent perspective, CarpathianMathematical Publications,13(2)(2021) 485-500, DOÄ°: https://orcid.org/0000-0001-6089-4366.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, Reversible ring property via idempotent elements, Georgian Mathematical Journal, https://doi.org/10.1515/gmj-2022-2189.
-
Tugce Pekacar Calci, Burcu Ungor, Abdullah Harmanci, Module decompositions by images of fully invariant submodules, Filomat 35:11 (2021), 3679–3687 https://doi.org/10.2298/FIL2111679P.
-
Savci R. Argun, TuÄŸçe P. Çalcı, Sait Halicioglu, Abdullah Harmanci and Burcu Ungor, Lattice properties of the minus order irregular modules, June 2021, Rocky Mountain Journal of Mathematics 52(1), DOI: 10.1216/rmj.2022.52.15
-
I. Baydar, B. Ungor, S. Halicioglu and A. Harmanci, Fusible Modules, Accepted to publish in Hacettepe Journal of Mathematics and Statistics.
-
Abdullah Harmanci, Yosum Kurtulmaz and Burcu Ungor, Rings which are duo on Zhou radical, São Paulo Journal of Mathematical Sciences https://doi.org/10.1007/s40863-022-00323-x.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, e-reversibility of rings via quasinilpotents, Georgian Mathematical Journal,https://doi.org/10.1515/gmj-2023-2045.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, On strongly quasi polar rings, Filomat 38:25 (2024), 8877–8891
https://doi.org/10.2298/FIL2425877K . -
T. Pakel, T. P. Calcı, S. Halicioglu, A. Harmanci, and B. Ungor, The natural partial order on modules, Accepted to publish in Boletín de la Sociedad Matemática Mexicana.
159. Halicioglu Sait, Baydar Isil, Ungor Burcu, Halicioglu Sait, Harmanci Abdullah, Modules whose endomorphism rings are fusible, Submitted for publication.
160. Handan Kose, Burcu Ungor, Abdullah Harmanci, e-Reduced rings in terms of the Zhou radical, Submitted for publication.
161. T. Pakel, B. Ungor, S. Halicioglu and A. Harmanci, Fine property of rings with respect to quasinilpotents, Submitted for publication.
162. Handan Kose, Burcu Ungor, Abdullah Harmanci, Fine Property of Rings with Respect to Quasinilpotents, Submitted for publication.
​
For Genealogy
Go to: https://www.mathgenealogy.org/id.php?id=79525
Mathematical Journals.
Go to: International Electronic Journal of Algebra(IEJA)
see this page for The International Electronic Journal of Algebra, www.ieja.net
​
I am a member of the Editorial Board for the Journals:
International Electronic Journal of Algebra
​
Algebras, Groups, Geometries
Go to: https://hadronicpress.com/AGG/agg-index.php​
Welcome to submitting your papers to me for publication in one of these journals!
​
​
Bilim Uzmani Ogrencilerim(My MS. Students)
​Nevin Saral,
Gonca GüngöroÄŸlu,
Yücel TıraÅŸ,
Ali ErdoÄŸan,
Sait HalicioÄŸlu,
Semra DoÄŸruöz
Dilek Pusat,
Burcu Üngör,
Hatice İnankıl
​AyÅŸe ÇiÄŸdem Özcan
Derya Keskin
TuÄŸçe Pekacar Çalcı
​
Doktora grencilerim(My PhD. Students):
​
Agayev, Nazým :Hacettepe Üniversitesi 2006
Calci, Mete: Ankara University 2019
Calci, Tugce: Ankara University 2021
Celik, Cesim: Hacettepe Üniversitesi 1995
Güngöroglu, Gonca: Hacettepe Üniversitesi 1997
Gurgun, Orhan: Ankara University 2016
Kosan, M.: Hacettepe Üniversitesi 2005
Leghwel, Abdurzak: Hacettepe Üniversitesi 2006
Ozcan, Ayse: Hacettepe Üniversitesi 1991
Tütüncü, Derya: Hacettepe Üniversitesi 1999
Üngör, Burcu: Ankara University 2014
​
The International Electronic Journal of Algebra (IEJA) is an international mathematical journal founded at the beginning of 2007. Volume 36 has been online since 14 July 2024, at www.ieja.net.
Prof Dr Abdullah Harmanci