ÖzgecmiÅŸ
DoÄŸum : Konya-Akören 1944.
Lisans :1968 Ege Universitesi Matematik Bölümü.
Bilim Uzmanligi(MS) : 1971-1973 California Universitesi, Santa Barbara Kampusu, ABD.
Doktora(PhD) : 1974 Hacettepe Universitesi, Ankara.
Doçent : 1980 Hacettepe Universitesi, Ankara.
Profesör : 1988 Hacettepe Universitesi, Ankara.
Gorevlendirmelerim:
(1). 1978 de 6 ay, Ottawa Universitesi, Canada.
(2). 1989 da 15 gün Bar Ilan Universitesi, Israil.
(3). 1990 da 5 ay Glasgow Universitesi, Ingiltere.
(4). 1991 de 50 gun Glasgow Universitesi, Ingiltere.
(5). 1992 de 45 gun Glasgow Universitesi, Ingiltere.
Yayinlar : Prof. Dr. Abdullah Harmanci;
-
On the commutativity of some class of rings. J. Austral. Math. Soc. Ser. A 21 (1976), no. 3, 376-380.
-
Two elementary commutativity theorems for rings. Acta Math. Acad. Sci. Hungar. 29(1977), no. 1-2, 23-29.
-
On the strongly regular near-rings, Hacettepe Bull. of Sciences, 4(1975),118-122.
-
On the commutativity of Rings with Polynomial constrains, Hacettepe Bull. of Sciences, 5(1976),8-11.
-
Degismeli Cebire Giris (Ceviri : An Introduction to Commutative, Algebra, Atiyah-McDonald) Hacettepe Universitesi Yayini, 1980.
-
Cebir I, Hacettepe Universitesi Yayini,1987.
-
Cebir II, Hacettepe Universitesi Yayini, 1987.
-
On a class of Schur AW*-algebras. Acta Math. Hungar. 41(1983), no. 3-4, 279-281.
-
Matrix Baer *-Rings, Hacettepe Bull. of Sciences, 15, 61-67, 1986.
-
Some remarks on the commutativity of rings, Hacettepe Bull. of Sciences, 15(1986),69-75.
-
(A. Harmanci and P. F. Smith) Relative injectivity and module classes. Comm. Algebra 20 (1992), no. 9, 2471-2501.
-
( P. F. Smith and A. Harmanci) Finite direct sums of CS-modules. Houston J. Math. 19 (1993), no. 4, 523-532.
-
(Y. Tiras, A. Tercan and A. Harmanci) Prime modules. Honam Math. J. 18 (1996), no. 1, 5-15.
-
(With P. F. Smith, Y. Tiras and A. Tercan) CS-Moduller, TBAG-1200 Proje 1995.
-
(With P. F. Smith, Y. Tiras and A. Tercan) The Bass-Papp theorem and some related results. Vietnam J. Math. 25 (1997), no. 1,33-39.
-
16. (With P. F. Smith, Y. Tirai and A. Tercan) Direct sums of CS-modules. Houston J. Math. 22(1996), no. 1, 61-71.
-
(With P. F. Smith and C. Celik) A generalization of CS-modules. Comm. Algebra 23(1995), no. 14, 5445-5460.
-
(With Y. Tiras and A. Tercan) A study of prime submodules and the classification of prime submodules of an Artinian module.Far East J. Math. Sci. 2 (1994), no. 2, 191-199.
-
(With G. Gungoroglu) Coatomic modules over Dedekind domains. Hacet. Bull. Nat. Sci. Eng. Ser. B 28(1999), 25-29.
-
(With D. Keskin and P. F. Smith) On delta-Supplemented Modules, Acta Math. Hungar. 83 (1999), no. 1-2, 161-169.
-
(With A. C. Ozcan) A Characterization of some rings by functor Z*( ). Turkish J. Math. 21(1997), no. 3, 325-331.
-
(With Y. Tiras) On prime submodules and primary decomposition. Czechoslovak Math. J. 50(125) (2000), no. 1, 83-90.
-
(Y. Tiras, A. Harmanci and P. F. Smith) A characterization of prime submodules. J. Algebra 212 (1999), no. 2, 743-752.
-
24 (G. Gungoroglu and A. Harmanci) On some classes of modules. Czechoslovak Math. J. 50(125) (2000), no. 4, 839-846.
-
25 . (Y. Tiras, A. Harmanci, P. F. Smith) Some remarks on dense submodules of multiplication modules.
-
Comm. Algebra 28 (2000), no. 5, 2291-2296.
-
26 .(G. Gungoroglu - A. Harmanci) Soyut Cebir'e Giris Dersleri, Problemler ve Cozumleri, Kasim 1999.
-
(G. Gungoroglu - A. Harmanci) Lineer Cebir Dersleri, Problemler ve Cozumleri, Ocak 2000.
-
(Eroglu, Nuray; Tercan, Adnan; Harmanci, Abdullah) Modules for which every submodule has a unique d-closure. Hacet. Bull.
-
Nat. Sci. Eng. Ser. B 29 (2000), 23-29.
-
29. (N. Eroglu, A. Tercan and A. Harmanci) d-Normal Modules, Hacettepe Nat. and Science Bulletin, Series B, 29(2001), 23-29.
-
30. (A. C. Ozcan and A. Harmanci) The torsion theory generated by M-small modules. Algebra Colloq. 10 (2003), no. 1, 41-52.
-
31. (D. Keskin and A. Harmanci) A relative version of the lifting property of modules. Algebra Colloq. 11 (2004), no. 3, 361-370.
-
32. (M. Alkan and A. Harmanci) On summand sum and summand intersection property of modules. Turkish J. Math. 26 (2002), no.
-
2, 131-147.
-
33. (G. Gungoroglu and A. Harmanci) Copolyform Modules. Preprint.
-
34. (T. Kosan and A. Harmanci) Modules which are lifting relative to module classes. Kyungpook Math. J. 48 (2008), no. 1, 63-71.
-
35. (T. Kosan and A. Harmanci) Modules supplemented relative to a torsion theory. Turkish J. Math. 28 (2004), no. 2, 177-184.
-
36. (T. Kosan and A. Harmanci) Decompositions of modules supplemented relative to a torsion theory. Internat. J. Math. 16 (2005), no. 1, 43-52.
-
37. (T. Kosan and A. Harmanci) $\oplus$--supplemented modules relative to a torsion theory. New Zealand J. Math. 35 (2006), no.
-
1, 63-75.
-
38. (G. G ng roglu, T. Kosan and A. Harmanci) On some torsion classes in \Sigma[M], Far East J. Math. Sci. (FJMS) 13 (2004), no.
-
1, 39-53.
-
39. (T. Kosan and A. Harmanci) $\deta-$lifting and $\delta$-supplemented modules. Submitted to publication.
-
40. (T.Kosan and A.Harmanci), Generalizations of coatomic modules. Cent. Eur. J. Math. 3 (2005), no. 2, 273-281.
-
41.(T. Kosan, N. Agayev, A. Leghwel and A. Harmanci) Duo modules and duo rings. Far East J. Math. Sci. (FJMS) 20(2006), no. 3,
-
341-346.
-
42. (A. Leghwel and A. Harmanci) CSSES-Modules and CSSES Rings, Gazi Univ. Journal of Science, 18(3),2005, 381-391.
-
43. (Nazim Agayev, Abdurzak Leghwel and Abdullah Harmanci) On a generalization of injective modules with IN-conditions. Far
-
East J. Math. Sci. (FJMS) 16 (2005), no. 3, 395-408.
-
44. (A. Hamdouni, A. C. Ozcan and A. Harmanci) Characterization of modules and rings by the summand intersection property and the summand sum property. JP J. Algebra Number Theory Appl. 5 (2005), no. 3, 469-490.
-
45. (S. Dogruoz and A. Harmanci) \tau-Extending Modules Related to Extendings, Preprint.
-
46. (M. Baser and A. Harmanci) \alpha-Semicommutative Rings, Preprint.
-
47. (T. Kosan, M. Baser and A. Harmanci) Quasi-Armendariz Modules, Submitted for publication.
-
48. (T. Kosan and A. Harmanci) Pseudo-Frobenius Module and Rings, Submited for publication.
-
49. (M. Baser and A. Harmanci) Reduced and p.q.-Baer modules. Taiwanese J. Math. 11 (2007), no. 1, 267-275.
-
50. (A. Leghwel and A. Harmanci) A note on semiperfect CS-rings with essential socle, submitted for publication.
-
51 (T. Kosan and A. Harmanci) Fully Invariant Submodules And Projection Invariant Submodules, accepted to publish in International J. Math.
-
52. (M. Baser, A. Harmanci and T. K. Kwak) Generalized semicommutative rings and their extensions. Bull. Korean Math. Soc. 45,(2008), no. 2, 285-297.
-
53. (M. Baser and A. Harmanci) On quasi-Baer and p.q.-Baer modules. Kyungpook Math. J. 49 (2009), no. 2, 255-263.
-
54. (A. C. Ozcan, A. Harmanci and P. F. Smith) Duo modules. Glasg. Math. J. 48 (2006), no. 3, 533-545.
-
55. (S. Dogruoz, A. Harmanci and P. F. Smith) Modules with unique closure relative to a torsion theory. Canad. Math. Bull. 53,(2010), no. 2, 230-238.
-
56. (N. Agayev and A. Harmanci) On semicommutative modules and rings. Kyungpook Math. J. 47 (2007), no. 1, 21 30.
-
57. (S. Dogru z, A. Harmanci and P. F. Smith) Modules with unique closure relative to a torsion theory. II. Turkish J. Math. 33, (2009), no. 2, 111-116.
-
58. (H. K. Yoldas, S. Halicioglu and A. Harmanci) McCoy Modules, Submitted for publication.
-
59. (N. Agayev, S. Halicioglu and A. Harmanci) On reduced modules. Commun. Fac. Sci. Univ. Ank. S r. A1 Math. Stat. 58 (2009), no. 1, 9-16.
-
60. (S. Halicioglu, N. Agayev and A. Harmanci) On symmetric modules. Riv. Mat. Univ. Parma (8) 2 (2009), 91-99.
-
(N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu) Abelian modules. Acta Math. Univ. Comenian. (N.S.) 78 (2) (2009), 235-244.
-
(N. Agayev, A. Harmanci and S. Halicioglu) On abelian rings. Turkish J. Math. 34 (2010), no. 4, 465-474.
-
(N. Agayev, T. zen and A. Harmanci) On a class of semicommutative modules. Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 149-158.
-
(N. Agayev, T. Ozen and A. Harmanci) On a class of semicommutative rings. Kyungpook Math. J. 51 (2011), no. 3, 283-291.
-
(N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu) Central Armendariz rings. Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 137-145.
-
(N. Agayev, A. Harmanci and S. Halicioglu) Extended Armendariz rings. Algebras Groups Geom. 26 (2009), no. 4, 343-354.
-
(H. Inankil, A. Harmanci and S. Halicioglu) On a class of lifting modules. Vietnam J. Math. 38 (2010), no. 2, 189-201.
-
(U. Acar and A. Harmanci) Soft Ideals of Soft WS-Algebras, TWMS J. of Pure and Applied Math.,4(2)(2013) 426-436.
-
(Ungor, B., Halicioglu, S., Kamal M. A. and Harmanci, A.) Strongly Large Module Extensions, An.Stiint.Univ.Al.I.Cuza Iasi. Mat., (N.S.)59(2) (2013), 431-452.
-
(U. Acar and A. Harmanci) Principally supplemented modules. Albanian J. Math. 4 (2010), no. 3, 79 88.
-
(Buhphang, A.M., Halicioglu,S., Harmanci,A., Singh,K.H., Kose,H.Y. and Rege, M.B.) On Rigid Modules, East-West J.of Math.15(1)(2013), 71-85.
-
(N. Agayev, A. Harmanci and S. Halicioglu) On Rickart modules. Bull. Iranian Math. Soc. 38 (2012), no. 2, 433 445.
-
(S. Dogruoz, A. Harmanci and P. F. Smith) Modules with Unique Closure Relative to a Torsion Theory III, Ukranian Mathematical Journal, 66(2014),1028–1036.
-
(B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci) On principally quasi-Baer modules. Albanian J. Math. 5 (2011), no. 3, 165173.
-
(H. Inankil, S. Halicioglu and A. Harmanci) A generalization of supplemented modules. Algebra Discrete Math. 11 (2011), no. 1, 59-74.
-
(H. Kose, B. Ungor, S. Halicioglu and A. Harmanci) A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci. 38(1), (2014), 43-48.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) On Generalized Principally Quasi-Baer Modules, Bol. Mat. 20(1), (2013), 51-62.
-
(U. Acar and A. Harmanci) Principally H-Supplemented Modules, Submitted for publication.
-
(G. Kafkas, B. Ungor, S. Halicioglu and A. Harmanci) Generalized symmetric rings. Algebra Discrete Math. 12 (2011), no. 2, 7284.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) Dual pi-Rickart modules. Rev. Colombiana Mat. 46 (2012), no. 2, 167-183.
-
(U. Acar and A. Harmanci) On A Class of H-Supplemented Modules, Accepted for publication in Algebras, Groups and Geometries.
-
(B. Ungor, G. Kafkas, S. Halicioglu and A. Harmanci) Some properties of Rickart modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 61(2012), no. 2, 1-8.
-
(Agayev,N., Ungor B., Halicioglu,S. and Harmanci, A.) Modules which are reduced over their endomorphism rings, Thai Journal of Mathematics,13(1)(2015), 177-188.
-
(B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci) Symmetric Modules over their endomorphism rings, Algebra Discrete Math. 19(2)(2015), 283-294..
-
(B. Ungor, S. Halicioglu and A. Harmanci) Extensions of Baer and Principally Projective Modules, Gazi Univ.J.Sci.,25(4)(2012) 863-867.
-
(B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci) Endo-principally projective modules. Novi Sad J. Math. 43 (2013), no. 1, 41 49.
-
(Ungor, B., Halicioglu, S., Kose, H. and Harmanci, A.) Rings in which every nilpotent element is central, Algebras,Groups and Geometries, 30(1)(2013), 1-18.
-
(Ungor,Burcu; Halicioglu,Sait; Harmanci,Abdullah) A Generalization of Rickart modules, Bull.Belgium Math.Soc.Simon Stevin, 21(2)(2014),303-318.
-
(B. Ungor, Halicioglu,Sait, A. Harmanci) On a class of $\delta$-supplemented modules, Bull. Malays.Sci.Soc., Bull. Malays. Math. Sci. Soc. (2)37(3)(2014), 703-717.
-
(B. Ungor; S. Halicioglu; A. Harmanci) Generalized Rigid Rings, Submitted for publication.
-
(H. Chen, A. Harmanci and A. Ozcan) Strongly $J$-Clean Rings, Ring Theory and Its App., Edited by: D. V. Huynh, S. K. Jain, S. R. Lopez-Permouth,S. T. Rizvi and C. S. Roman, March 2014.
-
(B. Ungor, S. Halicioglu and A. Harmanci) Rickart Modules Relative Goldie Torsion Theory, submitted for publication.
-
(H. Chen, A. Harmanci and A. Ozcan) Strongly J-clean rings with involutions, Ring theory and its applications, 33–44, Contemp. Math., 609, 2014.
-
(H. Chen, O. Gurgun, S. Halicioglu and A.Harmanci) Rings in which nilpotents belong to Jacobson Radical, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si Mat. (N.S.) Tomul LXII, 2016, f. 2, vol. 2.
-
(B. Ungor, S. Halicioglu and A. Harmanci) On a class of $\oplus$-supplemented modules, Ring Theory and Its App.Edited by: D. V. Huynh, S. K. Jain, S. R. Lopez-Permouth,S. Tariq Rizvi and Cosmin. and S. Roman, March 2014.
-
(H. Chen, A. Harmanci and A. C. Ozcan) Strongly *-Clean Properties and Rings of Functions, submitted for publication.
-
(B. Ungor, O. Gurgun, S. Halicioglu and A. Harmanci) Feckly Reduced Rings, Hacet. J. Math. Stat. 44(2)(2015), 375-384.
-
(A. Harmanci, S. R. Lopez-Permouth and B. Ungor) On the pure-injectivity profile of a ring, Comm. Algebra 43(11)(2015), 49845002.
-
(Gurgun,O., Halicioglu,S. and Harmanci, A.) Quasipolar Subrings of 3x3 Matrix Rings, Analele.St.Univ.Ovidius Constanta,21(3) (2013),133-146.
-
(O. Gurgun, S. Halicioglu and A.Harmanci) Quasipolarity of Generalized Matrix Rings, :https://www.researchgate.net/publication/258817348.
-
(Halicioglu Sait, Gurgun Orhan and Harmanci Abdullah) On Nil-quasipolar Rings, Boletín de la Sociedad Matemática Mexicana · April 2014 DOI: 10.1007/s40590-014-0005-y.
-
(B. Ungor, S. Halicioglu and A. Harmanci) Modules in which inverse images of some submodules are direct summand, Comm. Algebra 44(4)(2016), 1496-1513.
-
(A.Harmanci, H. Kose and Y. Kurtulmaz) On $\pi$-morphic modules, Hacettepe J. Math. Stat. 42(4)2013, 411-418.
-
(O. Gurgun, S. Halicioglu and A. Harmanci) Strong $J$-Cleanness of Formal Matrix Rings, accepted to publish in Advanced Studies in Contemporary Mathematics, 24 (4) (2014), 483-498.
-
(Kose,H., Ungor,B., Halicioglu,S. and Harmanci,A.) Quasi-Reduced Rings,Acta Univ.Apulensis Math. Inform.,34(2013),57-68.
-
(B.Ungor, S. Halicioglu and A.Harmanci) Rickart modules relative to singular submodule and dual Goldie torsion theory, J.Algebra Appl. 15(8)(2016).
-
(B. Ungor and A. Harmanci) Rickart Modules Determined by Preradicals \bar Z(.) and delta(.), An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(N.S). Tomu LXII,2(3)(2016), 807-822.
-
(H. Kose, B. Ungor and A. Harmanci), On Weak Symmetric Property of Rings, Southeast Asian Bulletin of Mathematics, 42(1)(2018), 31-40.
-
(M. B. Calci, B. Ungor and A. Harmanci), Central Quasipolar Rings, Rev. Colombiana Mat. 49(2)(2015), 281-292.
-
(T. Pekacar Calci, S. Halicioglu and A. Harmanci) A Generalization of J-Quasipolar Rings, Miskolc Math., 18(2017), no 1, 155165.
-
(M. Hosseinpour, B. Ungor, Y. Talebi and A. Harmanci), A generalization of a class of principally lifting modules, appears in Rocky Mountain Journal of Math., 47(5)(2017),1539-1563.
-
(H. Kose, B. Ungor and A. Harmanci) Nil-reflexive rings, Commun. Fac.Sci.Ank.Ser.A1 Math.Stat. 65(1)(2016), 19-33.
-
(T. Pekacar Calci, A. Harmanci and B. Ungor) An approach to quasipolarity for rings along nilpotent elements, Bol. Soc. Mat. Mex., 24(2018), 95-106
-
(A. Harmanci and B. Ungor) Modules decompositions arising via Rickart modules, Algebra Discrete Math.,26(1)(2018), 47-64. 115. (B. Ungor, S. Halicioglu and A. Harmanci) A dual approach in the theory of inverse split modules, Journal of Algebra and Its Appl., 17(8)(2018)(17 pages)DOI:10.1142/S0219498818501487.
-
(H. Kose, Y.Kurtulmaz, B. Ungor and A. Harmanci) Rings have normality in terms of the Jacobson radical, Arab. J. Math.https:// doi.org/10. 1007//s40065-018-0231-7, (2018).
-
(M. Burak Calci, S. Halicioglu and A. Harmanci) A class of J-quasipolar rings, J. Algebra and Related Topics, 3(2)(2015), 1-15.
-
(T. Pekacar Calci, S. Halicioglu and A. Harmanci) Modules having Baer summands, Communications in Algebra, 45(11)(2017), 4610-4621.
-
(T. Pekacar Calci, B. Ungor and A. Harmanci) Generating dual Baer modules via fully invariant submodules, Accepted by Quaest. Math.. DOI10.2980/16073606.2018.1508523.
-
(M. Burak Calci, H. Chen, S. Halicioglu and A. Harmanci) Reversibility of Rings with respect to the Jacobson Radical, Mediterr. J. Math. (2017) 14:137 DOI 10.1007/s00009-017-0938-2 1660-5446/17/030001-14.
-
(M. Burak Calci, S. Halicioglu and A. Harmanci and B. Gungor), Prime structures in a Morita context, Accepted to publish in Boletín de la Sociedad Matemática Mexicana (BSMM).
-
(H. Kose, Y. Kurtulmaz, B. Ungor and A. Harmanci) A perspective on amalgamated rings via symmetricity, AMS, Contemporary Mathematics,Vol. 727, 2019.
-
(Y. Talebi, A.R.M. Hamzekolaee, M. Hasseinpour, A. Harmanci and B.Ungor) Rings for which every cosingular module is projective, Hacettepe J. Math. and Stat., 48(4)(2019), 973-984.
-
(Y. Talebi, A.R.M. Hamzekolaee, M. Hasseinpour, A. Harmanci and B.Ungor), Rings for which every cosingular module is discrete, Hacettepe Journal of Mathematics & Statistics, Hacet. J. Math. Stat. Volume XX (x) (2019), 1 – 14
-
(H. Kose and A. Harmanci), On A Class of Semicommutative Rings, New Zealand Journal Of Mathematics, Volume 47 (2017), 69-85..
-
(B. Ungor, S. Halicioglu and A. Harmanci), Direct sum order in regular modules, Journal of Algebra and Applications, Vol. 19, No. 09, 2050178 (2020), https://doi.org/10.1142/S0219498820501789.
-
(T. Pekacar Calci, B. Ungor and A. Harmanci), Modules which are split by images of their fully invariant submodule, Submitted for publication.
-
(B.Ungor, S. Halicioglu, A. Harmanci and J. Marovt), On some partial orders in regular modules, Communications in Algebra, 48(10) (2020), 4542-4553.
-
(M, Calci, S. Halicioglu and A. Harmanci), Strong P-cleanness of trivial Morita contexts, Comm. Korean Math.Society.34(4)(2019),1069-1078,
-
(M, Calci, S. Halicioglu and A. Harmanci), Quasi-polarity of special Morita contexts, Miskolc Mathematical Notes, 19(1) (218),273-289. DOI:10.18514/MMN.2018.2288
-
(T. Pekacar, S. Halicioglu and A. Harmanci), Symmetric property of rings with respect to the Jacobson radical, Accepted to publish in Communications of the Korean Mathematical Society, 34(2019), No.1,pp. 43-54.
-
(A.Harmanci and H. Kose), On A Class Of Semicommutative Rings, New Zealand Journal Of Mathematics, Volume 47 (2017), 69-85. .
-
(S. Halicioglu, A. Harmanci and B. Ungor), A Class of Abelian Rings, submitted for publication.
-
(H. Kose, B. Ungor, Y. Kurtulmaz and A. Harmanci), Semicommutativity of Amalgamated Rings, Journal of math. research and applications, 38(4)(2018),366-376.
-
(H. Kose and A. Harmanci), Central CNZ Rings, Published in: Trans. of NAS Azerbaycan, Issue Math.' Series
-
Physical=Technical and Mathematical Sciences.
-
(A. Harmanci, H. Kose, Y. Kurtulmaz and B. Ungor), Reflexivity of rings via nilpotent elements, REVISTA DE LA UNION MATEMATICA ARGENTINA Vol. 61, No. 2, 2020, Pages 277–290. Published online: November 11, 2020, https://doi.org/10.33044/revuma.v61n2a06.
-
(B. Ungor, H. Kose, Y. Kurtulmaz and A. Harmanci), A nil approach to symmetricity of rings, Indian Journal of Mathematics, Vol.60, No.2, (2018), 337-357..
-
(O. Gurgun, S. Halicioglu and A. Harmanci), Quasipolarity of special Morita context rings, Miskolc Mathematical Notes,19(2018), 273-289.
-
(H. Chen, S. Halicioglu, A. Harmanci and Y. Kurtulmaz), Rings in which elements are a sum of a central and a unit element, Bull.Belg.Math.Soc., Simon Stevin, 4 (2019), 619-631.
-
(B. Üngör, S. Halicioglu, A. Harmanci and J. Marovt), Partial orders on the power sets of Baer rings, Journal of Algebra and Its Applications (2020) 2050011 (14 pages) .
-
(A.R.M. Hamzekolaei, A. Harmanci, Y. Talebi and B.Ungor), A new approach to H-supplemented modules via homomorphisms, Turkish J. Math., 42(2018), 1941-1955.
-
(Sait Halicioglu, Abdullah Harmanci, and Burcu Ungor), A class of abelian rings, Boletin de Matematicas, 25(1)(2018), 27-37. 143. (B. Ungor, H. Kose and A. Harmanci), Semicommutattivity of rings by the way of idempotents, Filomat 33:11 (2019), 3497– 3508 https://doi.org/10.2298/FIL1911497K.
-
(B. Ungor, S. Halicioglu, A. Harmanci and J. Marovt), Minus partial order in regular modules, Communications in Algebra Volume 48, 2020 - Issue 10, 4542-4553.
-
(H. Kose, B. Ungor, S. Halıcıoglu, A. Harmancı), A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci.38(2014), 43-48.
-
(Yosum Kurtulmaz, Sait Halicioglu, A. Harmancı and Huanyin Chen), Rings in which elements are a sum of a central and a unit element, Bull. Belg. Math. Soc. Simon Stevin Volume 26, Number 4 (2019), 619-631.
-
(Handan Kose, Burcu Ungor and Abdullah Harmancı), Semicommutativity of Rings by the way of Idempotents, Filomat, 33(11) (2019), 3497-3508. .
-
(B. Ungor, S. Halıcıoglu, A. Harmancı), Shorted operators with respect to a partial order in a dual module, Operators and Matrices, 14(1) (2020), doi:10.715.3/oam-2020-14-14.
-
(G. Dolinar, S. Halıcıoglu, A. Harmancı, B, Kuzma, J. Marovt and B. Ungor), Preservers of left-star and right-star partial orders, Linear Algebra and its applications, 587(2020),70-91.
-
(A. Harmanci, H. Kose, and B. Ungor), Symmetricity and reversibility from the perspective of nilpotents, has been accepted for publication at Communications of the Korean Mathematical Society.
-
Burcu Ungor, Sait Halicioglu, Abdullah Harmanci and Janko Marovt, On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96/1-2 (2020), 149-159. DOI:10.5486/PMD.2020.8634
-
B. Ungor, S. Halicioglu, A. Harmanci, The direct sum order in regular modules, J. Algebra Appl., accepted, DOI: 10.1142/S0219498820501789. (SCI-Expanded).
-
Abdullah Harmanci, Yosum Kurtulmaz and Burcu Üngör, Duo property for rings by the quasinilpotent perspective, CarpathianMathematical Publications,13(2)(2021) 485-500, DOÄ°: https://orcid.org/0000-0001-6089-4366.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, Reversible ring property via idempotent elements, Georgian MathematicalJournal, https://doi.org/10.1515/gmj-2022-2189.
-
Tugce Pekacar Calci, Burcu Ungor, Abdullah Harmanci, Module decompositions by images of fully invariant submodules, Filomat 35:11 (2021), 3679–3687 https://doi.org/10.2298/FIL2111679P.
-
Savci R. Argun, TuÄŸçe P. Çalcı, Sait Halicioglu, Abdullah Harmanci and Burcu Ungor, Lattice properties of the minus order irregular modules, June 2021, Rocky Mountain Journal of Mathematics 52(1), DOI: 10.1216/rmj.2022.52.15
-
I. Baydar, B. Ungor, S. Halicioglu and A. Harmanci, Fusible Modules, Accepted to publish in Hacettepe Journal of Mathematics and Statistics.
-
Abdullah Harmanci, Yosum Kurtulmaz and Burcu Ungor, Rings which are duo on Zhou radical, São Paulo Journal of Mathematical Sciences https://doi.org/10.1007/s40863-022-00323-x.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, e-reversibility of rings via quasinilpotents, Georgian Mathematical Journal,https://doi.org/10.1515/gmj-2023-2045.
-
Handan Kose, Burcu Ungor, Abdullah Harmanci, On strongly quasipolar rings, Submitted for publication.
-
T. Pakel, T. P. Calcı, S. Halicioglu, A. Harmanci, and B. Ungor, The natural partial order on modules, Submitted for publication.
Y for Genealogy
Go to: https://www.mathgenealogy.org/id.php?id=79525
Mathematical Journals.
Go to : International Electronic Journal of Algebra(IEJA)
see this page for: The International Electronic Journal of Algebra, www.ieja.net
.
I am a member of Editorial Board for the Journals:
International Electronic Journal of Algebra
​
Algebras, Groups, Geometries
​
Welcome to submit your papers to me for possible publication in one of these journals!
Latex ve Latex simgeleri ile ilgili sayfalar ve bilgiler:
​
Bilim Uzmani Ogrencilerim(My MS. Students)
​
​
Doktora grencilerim(My PhD. Students):
​
Agayev, Nazým :Hacettepe Üniversitesi 2006
Calci, Mete: Ankara University 2019
Calci, Tugce: Ankara University 2021
Celik, Cesim: Hacettepe Üniversitesi 1995
Güngöroglu, Gonca: Hacettepe Üniversitesi 1997
Gurgun, Orhan: Ankara University 2016
Kosan, M.: Hacettepe Üniversitesi 2005
Leghwel, Abdurzak: Hacettepe Üniversitesi 2006
Ozcan, Ayse: Hacettepe Üniversitesi 1991
Tütüncü, Derya: Hacettepe Üniversitesi 1999
Üngör, Burcu: Ankara University 2014
Prof Dr Abdullah Harmanci